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OBJECTIVE: The objective of this study was to evaluate the relations between bone mineral density
(BMD) and lead in blood, tibia, and patella and to investigate how BMD modifies these lead
biomarkers in older women.

DESIGN: In this study, we used cross-sectional analysis.

PARTICIPANTS: We studied 112 women, 5070 years of age, including both whites and African
Americans, residing in Baltimore, Maryland.

MEASUREMENTS: We measured lumbar spine BMD, blood and bone lead by dual energy X-ray
absorptiometry, anodic stripping voltammetry, and 19Cd-induced K-shell X-ray fluorescence,
respectively. We measured vitamin D receptor and apolipoprotein E (APOE) genotypes using
standard methods.

RESULTS: Mean (+ SD) BMD and lead levels in blood, tibia, and patella were 1.02 = 0.16 g/cm?,
3.3 + 2.2 pg/dL, 19.7 + 13.2 pg/g, and 5.7 + 15.3 pg/g, respectively. In adjusted analysis, higher
BMD was associated with higher tibia lead levels (p = 0.03). BMD was not associated with lead
levels in blood or patella. There was evidence of significant effect modification by BMD on rela-
tions of physical activity with blood lead levels and by APOE genotype on relations of BMD with
tibia lead levels. There was no evidence that BMD modified relations between tibia lead or patella

lead and blood lead levels.

CONCLUSIONS: We believe that BMD represents the capacity of bone that can store lead, by substi-
tution for calcium, and thus the findings may have relevance for effect-size estimates in persons

with higher BMD.

RELEVANCE TO CLINICAL PRACTICE: The results have implications for changes in lead kinetics with
aging, and thus the related risk of health effects associated with substantial early- and midlife lead

exposure in older persons.
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Skeletal lead represents approximately
90-95% of an adult’s current body burden of
lead (Barry 1975; Wittmers et al. 1988);
because of lead’s decades-long residence time
in tibia, measurement of tibia lead is an esti-
mate of lifetime cumulative lead dose. Bone
may release its lead content into the blood-
stream in the course of normal bone metabo-
lism and may release lead at increased rates
during active bone demineralization in later
life (Gerhardsson et al. 1993; Hernandez-
Avila et al. 2000; Rosen 1983; Silbergeld
et al. 1988; Symanski and Hertz-Picciotto
1995). The release of lead from bone with
aging is of particular concern to older women
in the United States because of high and
long-term past exposures, particularly before
the 1980s. Women also experience more
rapid bone mineral loss than men beginning
in the fourth decade of life, which can result
in loss of up to 50% of bone mineral density
(BMD) by 80 years of age (Ferguson and
Steffen 2003).

After menopause, the rate of bone loss
increases up to fourfold on average, from 0.5
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to 1% annually before menopause to 2-3%
annually after menopause (World Health
Organization 1994). These rates are influ-
enced by race/ethnicity [faster rates in whites
(Berglund et al. 2000; Marcus et al. 1996;
Symanski and Hertz-Picciotto 1995)], genetic
factors, hormones, nutrition, physical activ-
ity, body weight, and medications (Marcus
et al. 1996; Zmuda et al. 1999). Studies have
raised concerns that changes in bone turnover
rates that occur with aging may also influence
the kinetics of lead in bone and blood
(Fullmer 1992; Nash et al. 2004; Smith et al.
1995). This could result in greater release of
lead from bone, higher blood lead levels, and
increased deposition in critical target organs,
thus increasing the risk of lead-related health
outcomes. This raises questions about what
factors may modify the risk associated with
the early- and midlife legacy of high lead
exposure experienced by the current popula-
tion of older Americans (Bellinger 2000).
Lead in bone probably causes important
bone toxicity (Hicks et al. 1996; Klein and
Wiren 1993; Pounds et al. 1991; Ronis et al.

2001). Previous studies suggest that lead is
associated with decreases in the function of
osteoblasts, which are responsible for bone for-
mation (Hass et al. 1967; Long et al. 1990a,
1990b). In addition, two cross-sectional stud-
ies in lead workers reported an association of
lead exposure with increases in circulating
levels of parathyroid hormone (PTH) and
1,25-dihydroxyvitamin D3, which regulate the
levels of serum calcium and bone metabolism
(Kristal-Boneh et al. 1998; Mason et al. 1990).
Although evidence suggests that lead may be
associated with lower calcium content in bone
and impaired skeletal development (World
Health Organization 1994), the associations
between BMD, a measure that summarizes
aspects of the general health of bone and is
used to predict the risk for osteoporotic frac-
tures, and lead in bone and blood have not
been well characterized. A study in rats
(Gruber et al. 1997) found that lead exposure
was associated with lower BMD, whereas
another study (Escribano et al. 1997) reported
lead exposure associated with higher BMD.

In humans, studies have reported both
positive associations between BMD and
blood lead levels in children (i.e., the higher
the BMD, the higher the blood lead level)
(Campbell et al. 2004) and negative ones in
adults (Campbell and Auinger 2007; Nash
et al. 2004), but these results have not
allowed inferences about the likely causal
direction of this relation. Only one study of
73 selected, female, highly exposed former
smelter workers evaluated the association
between BMD and tibia lead (Potula et al.
20006); this study found that spine BMD
decreased with increasing blood lead over
time but found no association between BMD
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and tibia lead levels. To date, no studies have
evaluated the association of BMD with levels
of lead in patella, a trabecular and therefore
possibly more metabolically active bone site.
Finally, no studies have evaluated potential
effect modification by BMD on the relations
between blood and bone lead levels, an analy-
sis directly relevant to hypotheses regarding
BMD and release of lead from bone.

A growing literature suggests that genetic
polymorphisms may modify the toxicokinet-
ics of lead in bone and blood (Chuang et al.
2000; Schwartz et al. 2000; Wetmur et al.
1991). Two genes thought to be relevant to
deposition or release of lead or calcium from
bone are the vitamin D receptor (VDR) and
apolipoprotein E (APOE) (Cooper and
Umbach 1996; Peacock 1995; Stulc et al.
2000). Previous studies suggest that the VDR
Bsm] restriction site BB genotype, the VDR
Fokl restriction site ffgenotype, and the
APOE ¢4 allele are associated with low BMD
and higher rates of bone mineral loss (Fleet
et al. 1995; Shiraki et al. 1997; Zajickova
et al. 2002; Zmuda et al. 1999). In addition,
studies have found that subjects with the BB
genotype have higher bone lead, chelatable
lead, and blood lead levels than subjects with
the 66 genotype (Chuang et al. 2000;
Schwartz et al. 2000). To date, no studies
have evaluated relations of bone lead concen-
trations with VDR Fokl and APOE geno-
types, nor whether VDR Bsm1, Fokl, and
APOE genotypes modify the relations of bone
lead concentrations with BMD.

In this study, we evaluated associations
between BMD and lead in blood, tibia, and
patella, as well as effect modification by BMD
on relations among lead in these three pools,
in community-dwelling urban women in
Baltimore, Maryland, 50-70 years of age with
diversity by race/ethnicity. We also evaluated
effect modification of these relations by the
two polymorphic genes.

Materials and Methods

Study population and design. Study partici-
pants represented a subsample of women who
completed the third visit (from September
2004 through May 2005) of the longitudinal
Baltimore Memory Study. Study population,
selection, and recruitment for this study have
been previously reported (Martin et al. 2006;
Schwartz et al. 2004; Shih et al. 2006).
Women with complete information on lead
biomarkers and the relevant genotypes were
randomly selected by strata of race/ethnicity
and VDR genotype (by the Fokl restriction
enzyme) to ensure that we had approximately
similar numbers of subjects in each race/
ethnicity and VDR Fokl genotype category.
Selected subjects were then contacted by
phone to ascertain their interest in participat-

ing in this substudy. We telephoned each
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subject until we had established a disposition
after a maximum of 10 attempts. A total of
290 women were contacted, and 112 agreed
to participate and completed BMD measure-
ment, a sample size based on a balance of sta-
tistical power and budgetary considerations;
42 had BMD measurement at the Johns
Hopkins Outpatient Center and 70 at the
Johns Hopkins Bayview Medical Center. There
were no differences in levels of lead in blood,
tibia, or patella, age, the physical activity meas-
ures, menopausal status, or race/ethnicity
between those who were contacted and did
(= 112) or did not (7 = 178) participate for
the BMD substudy (all p-values > 0.05). All
participants provided written informed con-
sent at the beginning of the visit and were
paid $25 for their participation in the BMD
substudy. The Committee for Human
Research at the Johns Hopkins Bloomberg
School of Public Health reviewed and
approved the study.

Data collection. Data collection methods
have been previously reported (Martin et al.
2006; Schwartz et al. 2004; Shih et al. 2006).
In brief, all subjects were scheduled for three
visits at approximately 14-month intervals;
1,140 completed the first visit (V1), between
30 May 2001 and 20 September 2002; 1,022
(89.6%) completed the second visit (V2),
between 1 October 2002 and 31 December
2003; and 943 (82.7%) completed V3,
between 1 January 2004 and 31 March 2005.
Of the 197 who did not return for V3, 101
(9% of those enrolled) refused, 23 (2%) were
too ill, 21 (2%) were dececased, 38 (3%) were
lost to follow-up, and 14 (1%) moved out of
state. However, in comparing the 943 sub-
jects who completed V3 with the 77 who
completed V2 but not V3 and the 197 who
completed V1 but not V3, there was no evi-
dence of selective dropout by age, sex,
race/ethnicity, education, or wealth (all
p-values by chi-square or analysis of variance
> 0.05). At each study visit, data were col-
lected in the following order: neurobehavioral
testing, blood pressure, height, weight, spot
urine collection, structured interview, and a
10-mL blood specimen by venipuncture.
Lead in bone was measured by X-ray fluores-
cence (XRF) during the structured interview.

We used data from all three visits in the
cross-sectional analysis reported here. Data
obtained from the first visit included demo-
graphics, self-reported menopausal status,
medications (including hormone replacement
therapy), smoking history, alcohol consump-
tion, blood lead levels, and genotypes. Data
obtained from the second visit included tibia
lead levels, dietary intake using the Block
98.2 Dietary Questionnaire (Berkeley
Nutrition Services, Berkeley, CA), and physi-
cal activity using the Yale Physical Activity
Survey (YPAS), a valid and reliable 43-item
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self-report instrument designed for epidemio-
logic studies of older adults (Dipietro et al.
1993; Young et al. 2001). We used two
indices in the analysis, the total energy expen-
diture index (termed “Yale energy index”) and
the vigorous activity index (termed “Yale vig-
orous index”). Data obtained at the third
study visit were patella lead levels.

Laboratory methods. We measured BMD
at the lumbar spine (L1-L4) by the dual
energy X-ray absorptiometry (DEXA) tech-
nique. We used a Hologic QDR-4500A elite
fan beam bone densitometer with a motorized
table and C-arm (Hologic Inc., Bedford, MA)
located at the Division of Nuclear Medicine,
Department of Radiology, at the Johns
Hopkins Outpatient Center, and at the
Beacham Osteoporosis Center at the Johns
Hopkins Bayview Medical Center. Subjects
were placed in the supine position on a table
and scanned in the antero-posterior projection
with a 15-sec measurement. The accuracy
error of assessing BMD by DEXA is < 5%,
and the precision error is < 1% in vivo
(Christenson 1997; Patel et al. 2000). BMD
was measured in grams per square centimeter
and was expressed as a z-score (the number of
standard deviations above or below the age-
matched reference value) and a #score (the
number of standard deviations above or below
the young reference value, the mean BMD for
healthy 30-year-old women from the reference
data from the BMD laboratories).

We measured blood lead with anodic
stripping voltammetry (in micrograms per
deciliter) as previously reported (Schwartz
et al. 2004). As an index of reliability, the
coefficients of variability (CV) for 5.9 pg/dL
of blood lead were 11% (intraday CV) and
7% (interday CV). The limit of detection was
1 pg/dL. Tibia and patella lead were meas-
ured in units of micrograms lead per gram
bone mineral, via a 30-min measure at the
mid-tibia shaft and left-center patella, respec-
tively, using 109Cd-based K-shell XRF (Todd
2000a, 2000b; Todd and McNeill 1993;
Todd et al. 2002). Studies have demonstrated
that bone lead measurement by XRF is a valid
(Somervaille et al. 1986; Todd et al. 2002)
and reliable (Muntner et al. 2007; Todd et al.
2000, 2001) technique. We performed geno-
typing in the laboratory of the Malaria
Institute in the Johns Hopkins Bloomberg
School of Public Health. We measured poly-
morphisms in two genes thought relevant to
blood or bone lead levels, APOE and VDR
(the latter using two restriction enzymes,
Bsm1 and Fokl), by previously reported
methods (Audi et al. 1999; Chuang et al.
2000; Schafer et al. 2005; Stewart et al. 2002;
Zmuda et al. 1999).

Statistical analysis. The primary goals of
this cross-sectional analysis were as follows:
First, we aimed to evaluate associations of the
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three lead biomarkers with BMD to under-
stand how lead in bone and blood may influ-
ence BMD, and vice versa. Because there are
strong biologic rationales for evaluating the
directionality of the relations between BMD
and tibia lead in both directions (e.g., lead in
bone is toxic to bone cells, thus influencing
BMD, whereas bone mineral is lost with
aging, thus influencing the denominator in
the bone lead concentration measured by
XRF), we created models to do so. Although
the analysis was cross-sectional, we believe
that hypotheses can be generated about the
likely causal direction because of the different
timing of lead biomarker and BMD measure-
ment and the fact that deposition of lead in
bone is likely to reflect a much longer time
period than are changes in BMD. Second, we
aimed to examine whether these relations
were modified by the APOE and VDR poly-
morphisms. Finally, we aimed to examine
effect modification by BMD on the relations
of important predictor variables thought to be
relevant to bone mineral and bone lead kinet-
ics (e.g., age, sex, race/ethnicity, physical
activity, dietary intake, physical activity,
genotypes) with the three lead biomarkers.

Because of departures from the normality
assumption, blood lead was natural logarithm
(In) transformed before regressing on covari-
ates; the adequacy of this transformation was
confirmed by examination of the distribu-
tions of the residuals of the final regression
models. In the presentation of results, we
back-transformed regression coefficients from
the analysis of In-transformed concentrations
to facilitate interpretation of results in the
original blood lead measurement scale. The
resulting coefficients estimate ratios of
median concentrations comparing across
predictor levels.

Because XRF measurement of bone lead
concentration can, due to measurement uncer-
tainty, produce negative point estimates when
the true bone lead concentration is close to
zero, in our analysis, we kept all point esti-
mates (including negative values) of bone lead
concentrations, which yields less bias and
more efficient comparisons (Kim et al. 1995).
Negative values were particularly common for
patella lead (37.5% had values that were less
than or equal to zero). We thus used TOBIT
regression (Austin et al. 2000; Pindyck and
Rubinfeld 1998) with left truncation at 0 pg/g
to model tibia and patella lead. In brief,
TOBIT is used to model data whose distribu-
tion is limited compared to the normal distri-
bution (e.g., distribution is truncated or
censored). In the TOBIT model, it is assumed
that there is an underlying latent variable of
interest generated by the linear regression
model with an error term that is normally dis-
tributed, y; = X3 = ¢;, where & - MO, 0?), but
for which we have only observed y; =
max(0,y;). The TOBIT model uses maximum
likelihood for estimation. To evaluate whether
our results were sensitive to the modeling
method, we compared the results from
TOBIT models to those from multiple linear
regression. The associations and our conclu-
sions were similar (data not shown).

We used statistical software programs of
the STATA Corporation (version 9; StataCorp,
College Station, TX). To describe differences
in lead levels and selected subject characteris-
tics by BMD levels and to model effect modi-
fication by BMD on the relations between
lead biomarkers and their predictors, we
dichotomized BMD into high and low groups
at a BMD #score of zero. We first performed
univariate analyses by BMD group to compare
lead biomarkers, subject characteristics, and

Table 1. Selected subject characteristics and variables by BMD group, Baltimore Memory Study,

2001-2005.

High BMD? Low BMD No BMD*
Variable (n=41) (n=71) (n=502)
Tibia lead (pg/g) 200138 196+13.0 18.9+12.9
Patella lead (ug/g)? 52+155 6.0+£153 44+194
Patella lead (ug/g)° 148+8.7 149+12.0 141114
Blood lead (ug/g) 32+26 34+19 29+19
Age (years) 59.3+6.1 59.9+56 59.8+59
Yale energy index (100 kcal/week)®** 101.3+69.4 71.8+394 85.8+63.2
Yale vigorous index® 18.0+17.1 16.8+15.6 143+152
African American 17 (41.5) 30(42.3) 215(42.8)
Hormone replacement therapy™* 24 (60.0) 26 (38.2) 178 (36.0)
Postmenopausal 35(85.4) 60 (84.5) 436 (87.0)
APOE €4 allele** 6(14.6) 24(33.8) 138(27.7)

Values are mean + SD or no. (%).

at.Score > 0; t-score is the number of standard deviations above or below a young adult reference mean BMD. ZIncluded
all subjects. ¢Included only subjects who had patella lead level greater than zero (n = 69). “Time spent for each activity on
the Yale Physical Activity Survey is multiplied by an intensity (kcal/min) and is summed over all activities to create a total
energy expenditure index for each subject. €The frequency score is multiplied by the duration score to create the vigor-

ous activity index (unitless).

*p-Values > 0.05, based on t-test statistics for continuous variables or from chi-square tests for binary and categorical vari-
ables, evaluating the statistical significance of the differences of mean covariates comparing females with and without BMD
measurement. **p-Values < 0.05, based on t-test statistics for continuous variables or from chi-square tests for binary and
categorical variables, evaluating the statistical significance of the differences of mean covariates by BMD group.
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covariates in women with high and low BMD.
We used #tests and analysis of variance to
evaluate the statistical significance of the dif-
ferences of mean lead biomarkers and covari-
ates by BMD group and genotypes. We used
multiple linear regression to control for covari-
ates and evaluate potential confounding on
the associations between BMD and the three
lead biomarkers.

Covariates that were examined included
weight, height, body mass index (BMI, in kilo-
grams per square meter), tobacco and alcohol
consumption, medications [e.g., oral cortico-
steroids, hormone replacement therapy
(HRT)], and lifestyle and other risk factors for
bone mineral loss (e.g., specific medical condi-
tions, dietary history, physical activity, age, sex,
race/ethnicity). A variable was retained in the
final models if it was ) known to be important
based on prior studies, 4) a significant predic-
tor (p < 0.05) of lead biomarkers, ¢) a con-
founder (based on a 10% change in regression
coefficients), or d) an effect modifier of the
relations of interest. The final regression model
was used for exploratory analysis of effect
modification, by inclusion of cross-product
terms for testing of specific effect modification
hypotheses, one at a time.

We performed regression diagnostics,
including examination of distributions, resid-
uals, partial residual plots, and variance infla-
tion factors, to evaluate the assumptions of
linear regression (e.g., normality of residuals,
linearity, homoscedasticity, independence).
We also evaluated potential nonlinearity by
inclusion of quadratic terms in the linear
regression models (retained if p < 0.05).

Results

Description of study subjects. Of the 112 female
participants, 42% were of African-American
race/ethnicity. The average age (+ SD) of the
participants was 59.7 + 5.7 years at enroll-
ment; 83% were postmenopausal, 14% pre-
menopausal, and 3% suspected they were
perimenopausal. The stratified random selec-
tion of study subjects by VDR Fokl genotype
was generally successful, as subjects consisted of
41 (36.6%), 38 (33.9%), and 33 (29.5%) of
the VDR Fokl, FF, Ff; and ff'genotypes,
respectively. There were no differences (all
p-values > 0.05) in levels of lead in blood, tibia,
or patella, or in age, physical activity measures,
race/ethnicity, hormone replacement therapy
use, menopausal status, or APOE genotype
among women who did and did not partici-
pate in the BMD substudy (Table 1).

The mean BMD of the lumbar spine and
blood, tibia, and patella lead levels were
1.03 £ 0.16 g/cm?, 3.3 + 2.2 pg/dL, 19.7 +
13.2 pglg, and 5.7 + 15.3 pglg, respectively.
There was no difference in mean BMD levels
between the testing site of measurements
[p > 0.05 for comparing measurements at the
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Johns Hopkins Outpatient Center (mean =
1.034 + 0.025 g/cm?) with those at the Johns
Hopkins Bayview Medical Center (mean =
1.027 £ 0.018 g/cm?)]. The prevalences of the
APOE €4 allele and the VDR Bsml BB geno-
type were 26.8% and 11.6%, respectively.
There were differences by BMD group in the
mean of the Yale energy index, and in the
prevalence of the APOE €4 allele and the use
of HRT (all p < 0.05) (Table 1). Even though
there was a higher proportion of subjects in
the high BMD group who reported using
HRT than in low BMD group (Table 1), the
difference in the mean BMD by HRT use did
not achieve statistical significance.

Modeling BMD: associations of lead
biomarkers with BMD and effect modifica-
tion by polymorphic genes on these relations.
In crude analysis, blood, tibia, and patella
lead levels were not associated with BMD lev-
els (p > 0.10). However, in the adjusted
analysis of BMD levels, higher tibia lead was
associated with higher BMD levels, whereas
the APOE ¢4 allele was associated with lower
BMD levels (Table 2, model 1). Adjusting for
weight and APOE genotype, the average
BMD was 0.002 g/cm2 higher for every
1.0 pg/g increase in tibia lead (p = 0.04) and
0.057 g/cm? lower for subjects with the ¢4
allele than subjects without the allele (p =
0.05) (Table 2, model 1). Menopausal status
was not associated with BMD. We next
examined effect modification by potential
moderators on the relations of tibia lead levels
with BMD. We found that APOE genotype
modified the relations of tibia lead with BMD
(Table 2, model 2). On average, the change in
the adjusted mean BMD per 1 pg/g change in
tibia lead levels was not the same for women
with and without the APOE €4. For women
without the allele, the mean BMD increased
0.004 g/cm? per 1 pg/g increase in tibia lead
levels, whereas the mean BMD decreased
0.001 g/cm2 per 1 pg/g increase in tibia lead
levels in women with the allele (p < 0.01). We
did not observe any associations of VDR
genotypes with BMD levels or effect modifi-
cation by VDR genotypes on relations
between the three lead biomarkers and BMD.

Modeling lead biomarkers: associations of
BMD with lead biomarkers and effect modifi-
cation by BMD on the relations of predictor
variables with lead biomarkers. BMD was not
associated with blood lead levels in either crude
or adjusted analyses (Table 3). However, BMD
modified the relation of the Yale energy index
with blood lead levels (Table 3, model 1; for
these models, BMD was divided into high and
low groups for ease of interpretation). The
adjusted median blood lead in those with low
BMD was 0.3% higher per 100 kcal/week
increase in the Yale energy index, whereas the
median blood lead was 0.3% lower per 100
kcal/week increase in women with a high
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BMD (p < 0.01). There was no evidence of
effect modification by BMD on the relations
of patella lead or tibia lead with blood lead lev-
els (Table 3, models 2 and 3, respectively).
Menopausal status was not associated with the
lead biomarkers, nor did it modify relations of
BMD with lead biomarkers (but there was lit-
tle variation in menopausal status because 85%
of subjects were postmenopausal).

With tibia lead as the dependent variable,
BMD was not associated with levels in the
crude analysis. However, in the adjusted analy-
sis, BMD was positively associated with tibia
lead levels (p = 0.03); tibia lead levels were 0.01
ug/g higher for every 1 mg/cm? increase in
BMD (Table 4, model 1). Both APOE geno-
type and the Yale energy index modified the
relation of BMD with tibia lead (Table 4,
models 2 and 3, respectively). The APOE
genotype differences in adjusted mean tibia
lead were different between women with high
BMD and low BMD (p < 0.01). In the low
BMD group, women with the €4 allele had
tibia lead levels that were 6.2 pg/g higher com-
pared with those without the allele, but in the
high BMD group, women with the allele had

tibia lead levels that were 9.9 pg/g lower com-
pared with those without the allele (Table 4,
model 2). Finally, for those in the low BMD
group, adjusted tibia lead levels were 0.09 pg/g
higher per 100 kcal/week increase in the Yale
energy index. In contrast, for those in the high
BMD group, mean tibia lead levels were 0.01
pg/g lower per 100 keal/week increase in the
index (p = 0.03, Table 4, model 3).

With patella lead as the dependent vari-
able, we did not observe associations with
BMD in either crude or adjusted analyses
(data not shown). There was also no evidence
that BMD modified relations of important
predictor variables with patella lead levels
(data not shown).

Discussion

In an earlier report that included the entire
sample of > 900 adults in the Baltimore
Memory Study who completed both tibia and
patella lead measurements (Theppeang et al.,
in press), we made several observations that
motivated us to measure BMD in a sub-
sample of women. For example, we found
that African Americans had significantly

Table 2. Linear regression modeling results identifying predictors of BMD, Baltimore Memory Study,

2001-2005.2

Independent variable

(units of B coefficient) B Coefficient [ SE? p-Value

Model 1 (adjusted r2 = 29.0%)
Intercept 0.664 0.073 <0.01
Tibia (g/cm?/ug/q) 0.002 0.001 0.04
Weight (g/cmZ/kg) 0.004 0.001 <0.01
APOE £4 allele (g/cm?)° -0.057 0.029 0.05

Model 2 (adjusted r? = 32.9%)°
Intercept 0.610 0.078 <0.01
Tibia (g/cm?/ug/q) 0.004 0.001 <0.01
Weight (g/cm?/kg) 0.005 0.001 <0.01
ApoE €4 allele (g/cm?)¢ —0.059 0.049 0.23
Tibia *ApoE (g/cm?/ug/g) -0.005 0.002 <001

aModels also controlled for the VDR Fok1 genotype. Y Robust estimates. APOE haplotype €2 or £3 versus &4.

Table 3. Linear regression modeling results identifying predictors of blood lead levels, Baltimore Memory

Study, 2001-2005.

Independent variable

(units of B coefficient) {3 Coefficient p SE? p-Value
Model 1 (adjusted r2 = 27.4%)?
Intercept 2.247 0.538 <0.01
Yale energy [In(ug/dL)/100 kcal/week] 0.003 0.002 0.03
High BMD group®[In(pg/dL)] (vs. low) 0.481 0.237 0.05
High BMD group x Yale energy [In(ug/dL)/100 kcal/week] -0.006 0.003 0.02
Model 2 (adjusted r? = 23.2%)?
Intercept 2.654 0.450 <0.01
Patella [In(pg/dL)/ug/g] 0.010 0.005 0.03
High BMD group®[In(pg/dL)] (vs. low) -0.013 0.147 0.93
High BMD group x patella [In({ug/dL)/pg/g] -0.005 0.009 0.57
Model 3 (adjusted r? = 23.4%)¢
Intercept 2.490 0.437 <0.01
Tibia [In{ug/dL)/ug/g] 0.005 0.004 0.30
High BMD group®([In(pg/dL)] (vs. low) —0.261 0.212 0.22
High BMD group x tibia [In{ug/dL)/ug/g] 0.011 0.009 0.24

aRobust estimates. ®Model controlled for patella lead level (pg/g), BMI (kg/m?), consumption of alcohol in the past month
(yes vs. no), HRT use (yes vs. no), and Yale vigorous index. ¢t-Score > 0 versus t-score < 0; t-score is a number of SDs
above or below a young adult reference mean BMD. “Models also controlled for BMI (kg/m?), consumption of alcoholic
beverages in the past month (yes vs. no), hormone replacement use (yes vs. no), and the Yale vigorous activity index.
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higher tibia lead levels than did whites (on
average, almost 30% higher) (Theppeang
et al., in press), but no difference in patella
lead levels. Higher tibia and patella lead levels
were both associated with increasing age. Use
of HRT and greater physical activity were
both independently associated with lower
blood lead levels, probably because there was
less release of lead from bone with demineral-
ization (Webber et al. 1995). APOE genotype
modified associations of sex with patella lead
levels. Finally, women had significantly lower
blood and patella lead levels than did men. As
many of these associations could be explained
by the kinetics of lead in bone or bone min-
eral, further investigation required that we
measure BMD. Because bone demineraliza-
tion with increasing age is much greater in
women, we decided to optimize the study
design by limiting BMD measurement to a
random sample of 112 women, stratified by
selected genotypes and race/ethnicity.
Although there were interesting race/ethnic
differences in analysis of the complete sample,
we found no consistent race/ethnic associa-
tions in the BMD subsample. Our ability to
evaluate whether race/ethnicity modified rela-
tions of menopausal status with BMD or lead
biomarkers was limited by the limited varia-
tion in menopausal status. We found no evi-
dence that race/ethnicity modified relations of
age, physical activity, or other predictor vari-
ables with lead biomarkers or BMD.

In the adjusted analysis, we found that
higher tibia lead levels were associated with
higher BMD. However, BMD was measured
at the lumbar spine (L1-L4), which consists
of more than 66% trabecular bone (Einhorn
1992; Riggs et al. 1982; World Health
Organization 1994), whereas lead in bone
was measured in both tibia and patella. Tibia
is approximately 99% cortical bone
(Giangregorio and Webber 2004), and patella

is approximately 99% trabecular bone
(Hughes et al. 1998). These large differences
in bone type by the three sites of the measure-
ments thus complicate interpretation of the
associations. It may also be inaccurate to
assume that the “mineral” of BMD measure-
ments is identical to the “mass of bone min-
eral” denominator of a bone lead XRF result
(which is actually a matrix conversion factor
of the ratio of the elastic scattering cross-sec-
tions for calcium hydroxyapatite and calcium
sulfate dihydrate, applied to the mass of cal-
cium dihydrate). This contrast is also evident
in the differences in the units of the two meas-
ures (BMD is mass per unit area, whereas
XRF samples a volume of bone).

We considered three other potential
explanations for the association of BMD with
tibia lead. First, lead in bone may interfere
with BMD measurement, resulting in spuri-
ously high BMD estimates. Second, lead may
be toxic to osteoblasts, osteoclasts, or both,
influencing the biology of bone and thus
mineral deposition and mobilization. Finally,
bone with higher mineral content may have
more binding and deposition sites for lead, so
bone with higher density simply allows more
deposition sites for lead.

Concerning the first explanation, there is
some direct evidence against this hypothesis.
Certainly, lead and calcium in bone have sim-
ilar chemical properties and the substitution
by lead for calcium in hydroxyapatite crystal
[Ca;o(PO4)(OH),] in bone tissue may result
in a spurious increase in bone density when
measured by DEXA because lead has a higher
atomic number and attenuation coefficient
than does calcium. This may in turn increase
the attenuation of photons by the presence of
lead in bone (Escribano et al. 1997; Popovic
et al. 2004). However, a study has systemati-
cally evaluated this issue. Popovic et al.
(2004) reported that DEXA overestimated

Table 4. TOBIT regression modeling results identifying predictors of tibia lead levels,? Baltimore Memory

Study, 2001-2005.

Independent variable

(units of f coefficient) {3 coefficient B SE? p-Value
Model 1 (adjusted r? = 16.2%)
Intercept 8.677 7.822 0.27
Age (ug/g/year) 0.471 0.209 0.02
African American (ug/g) 8.756 2795 <001
BMD (pg/g per mg/cm?) 0.013 0.007 0.04
Model 2 (adjusted r2=19.4%)°
Intercept 18.929 4.667 <0.01
ApoE €4 allele (pg/g)? 6.163 3.314 0.06
High BMD group®(ug/g) 4.294 2729 0.12
High BMD group *ApoF €4 allele (ug/g) -16.077 4.340 <0.01
Model 3 (adjusted r?=18.1 %)°
Intercept 14.934 5.401 <0.01
Yale energy (1g/g/100 kcal/wk) 0.088 0.036 0.02
High BMD group®(ug/g) 8.090 4.581 0.08
High BMD group x Yale energy (ug/g/100 kcal/wk) —0.098 0.045 0.03

aModels controlled for education, alcohol use in the past month (yes vs. no), and dietary vitamin C intake. “Robust esti-
mates. “Models also included age and race/ethnicity. 9At least one APOE ¢4 allele vs. none. ét-Score > 0 vs. t-score <0 ;
t-score is a number of SDs above or below a young adult reference mean BMD.
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BMD only by a slight 0.3% at a bone lead
concentration of 100 ppm (1 ppm is here
approximately equivalent to 1 pg/g), a very
high bone lead level, or 0.0013 g/cm?/ppm
lead. This small effect could not be detected
by the Hologic QDR 4500A DEXA instru-
ment, the device used for BMD measurement
in the Popovic et al. (2004) study, which was
also used in our study. We therefore believe
that it is unlikely that our observation of a
positive association between tibia lead and
BMD arises from lead elevating measured
BMD estimates.

A second explanation for this association
is that lead may influence the function of
bone cells. For example, lead may directly
inhibit osteoblast function (Hass et al. 1967;
Long et al. 1990a), cells responsible for bone
formation (Marcus et al. 1996), or interfere
with their ability to respond to hormonal
regulation (e.g., by vitamin D3) (Pounds et al.
1991). Lead may also influence these cells
indirectly by affecting circulating levels of
PTH or vitamin D3 (Kristal-Boneh et al.
1998; Long et al. 1990a; Mason et al. 1990;
Pounds et al. 1991). However, evaluation of
the overall body of evidence supports the con-
clusion that the toxicity of lead in bone results
in decreases in bone formation or increases in
bone resorption. Therefore, higher lead levels
in bone should be associated with lower
BMDs, which is contrary to our findings.
Thus, the toxicity of lead on bone cells is
unlikely to explain our findings.

The third and final possible explanation
that we considered, and the one we favor, is
that higher BMD provides more sites for lead
binding and deposition. That is, the two
measures are positively associated because
higher BMDs allow greater deposition of lead
in bone, despite the fact that XRF results are
normalized to bone mineral mass. Because
lead deposits in bone tissue by substitution
for calcium in the hydroxyapatite crystal dur-
ing all stages of bone remodeling and bone
growth (Castellino et al. 1995; Wittmers et al.
1988), higher amounts of calcium binding to
the crystal in bone would result in both
higher BMD measurements and more sites
for lead deposition. For this explanation to be
valid, we would expect that the same relation-
ship would be observed in both men and
women, but we only measured BMD in
women, as previously explained. This expla-
nation would also necessitate inequality
between the “mineral” of BMD and XRF
because the latter is normalized to photon
scattering that occurs almost exclusively from
bone mineral.

As expected, we found that APOE geno-
type was negatively associated with BMD.
This finding is consistent with prior studies
demonstrating that the APOE €4 allele is asso-
ciated with lower BMD and higher bone
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turnover rates (Shiraki et al. 1997; Zmuda
etal. 1999). In addition, in the adjusted analy-
sis, APOE genotype modified relations of tibia
lead with BMD (with BMD as the dependent
variable), and, similarly, BMD modified rela-
tions of APOE genotype with tibia lead (with
tibia lead as the dependent variable). Taken
together, these data imply that the €4 allele
was associated with lead loss that exceeded
bone mineral loss in women with higher
BMDs and that lead in bone does not lead to
spurious elevations in BMD measurement
(because if it does, we would expect the same
relationship regardless of APOE allele).

Although we did not find that BMD
modified the relations of tibia or patella
lead with blood lead levels, we observed that
BMD modified the relation of the Yale total
energy index with blood lead levels. Higher
total energy expenditure might be a risk fac-
tor for bone mineral loss in women with
lower BMDs. Therefore, this may result in
increased release of lead from bone back to
blood in women with lower BMDs but may
stabilize highly active bone such as patella
from releasing lead back to blood in women
with higher BMDs.

This study has several strengths. First,
there was diversity by race/ethnicity and the
inclusion of important genotypes, allowing us
to evaluate relations of these important predic-
tor variables with both lead biomarkers and
BMD. Our sample size was > 50% larger than
the only other study of the relation between
tibia lead and BMD (Potula et al. 2006).
Finally, ours was the first study, to our knowl-
edge, to evaluate associations between BMD
and patella lead levels. The limitations of the
study include the cross-sectional design, which
does not allow causal inferences. Second, the
lead biomarkers were obtained from different
visits (ranging from 18 to 36 months apart),
and BMD was measured months after the
measurements of other biomarkers. Therefore,
the associations we found may not reflect
actual cross-sectional associations of covariates
and lead biomarkers, particularly for blood,
BMD, and covariates that change over time.
However, we do not think this problem is
likely to be very severe for tibia and patella
lead levels because residence time of lead in
tibia is almost 3 decades (Rabinowitz et al.
1976) and in patella is 3—-5 years (Chettle
1995; Todd and Chettle 1994). Third, we
measured the lead biomarkers and BMD only
one time, and mainly in women who had
already passed menopause. The BMD and
lead biomarker levels may have already signifi-
cantly changed during this period, altering
associations that may have existed during the
premenopausal and perimenopausal periods.
Finally, the various biomarkers and question-
naire-based variables were each measured with
different measurement errors, and thus some

Relationship of bone mineral density with lead biomarkers

of the contrasting associations could be
explained by possible residual confounding.

We conclude that our data provide, to our
knowledge, the first direct epidemiologic evi-
dence that BMD may influence the deposi-
tion and kinetics of lead in bone. The
findings suggest that the health effects of lead
may be underestimated (but probably only
slightly) for subjects with higher bone mineral
densities. In addition, factors that alter bone
turnover rates such as APOE and physical
activity could have important influences on
the kinetics of internal stores of lead.
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